毒瘤题,纪念一下
提交次数多达两页半
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace io {
const int SIZE = (1 << 21) + 1;
char ibuf[SIZE], *iS, *iT, obuf[SIZE], *oS = obuf, *oT = oS + SIZE - 1, c, qu[55]; int f, qr;
// getchar
#define gc() (iS == iT ? (iT = (iS = ibuf) + fread (ibuf, 1, SIZE, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
// print the remaining part
inline void flush () {
fwrite (obuf, 1, oS - obuf, stdout);
oS = obuf;
}
// putchar
inline void putc (char x) {
*oS ++ = x;
if (oS == oT) flush ();
}
// input a signed integer
template <class I>
inline void gi (I &x) {
for (f = 1, c = gc(); c < '0' || c > '9'; c = gc()) if (c == '-') f = -1;
for (x = 0; c <= '9' && c >= '0'; c = gc()) x = x * 10 + (c & 15); x *= f;
}
// print a signed integer
template <class I>
inline void print (I x) {
if (!x) putc ('0'); if (x < 0) putc ('-'), x = -x;
while (x) qu[++ qr] = x % 10 + '0', x /= 10;
while (qr) putc (qu[qr --]);
}
//no need to call flush at the end manually!
struct Flusher_ {~Flusher_(){flush();}}io_flusher_;
}
using io :: gi;
using io :: putc;
using io :: print;
const int N = 1e5 + 9;
const int NB = 709;
int n, m, x[N], y[N], id[N];
// pre[x]:x到它所在块块首的区间内的逆序对数量
// suf[x]: x到它所在块块尾的区间内的逆序对数量
// F[i][j]: 块i到块j的这段区间内的逆序对数量
// f[i][j]: a1-aj与第i块中的数形成的逆序对数量
int pre[N], suf[N], f[NB][N];
ll F[NB][NB], ans;
// 分块
int bel[N], L[NB], R[NB], bSize;
///////////////////////BIT
int bit[N];
inline void add(int p, int d) {
for (int i = p; i <= n; i += i & -i)
bit[i] += d;
}
inline int psq(int p) {
int sum = 0;
for (int i = p; i > 0; i -= i & -i)
sum += bit[i];
return sum;
}
////////////////////////////
int a[N], b[N], la, lb;
inline int merge(int *a, int *b, int la, int lb) {
int ia = 1, ib = 1;
int res = 0;
while (ia <= la && ib <= lb) {
if (a[ia] < b[ib])
++ia;
else
res += la - ia + 1, ++ib;
}
return res;
}
////////////////////////////
inline void init() {
/////////分块
bSize = 370;
for (int i = 1; i <= n; i++)
bel[i] = (i - 1) / bSize + 1;
for (int i = 1; i <= bel[n]; i++) {
L[i] = R[i - 1] + 1;
R[i] = i * bSize;
}
R[bel[n]] = n;
////////算pre和suf,块内排序
for (int i = 1; i <= bel[n]; i++) {
sort(y + L[i], y + R[i] + 1);
int nrp = 0;
for (int j = L[i]; j <= R[i]; j++) {
add(x[j], 1);
nrp += j - L[i] + 1 - psq(x[j]);
pre[j] = nrp;
}
F[i][i] = nrp;
for (int j = L[i]; j <= R[i]; j++) {
suf[j] = nrp;
add(x[j], -1);
nrp -= psq(x[j] - 1);
}
}
/////////////计算f
for (int i = 1; i <= bel[n]; i++) {
int k = L[i];
for (int j = 1; j <= n; j++) {
while (k <= R[i] && y[k] < j) ++k;
if (id[j] < L[i]) {
f[i][id[j]] = k - L[i];
}
else if (id[j] > R[i]) {
f[i][id[j]] = R[i] - k + 1;
}
}
for (int j = 1; j <= n; j++) {
f[i][j] += f[i][j-1];
}
}
/////////////计算F
for (int k = 1; k < bel[n]; k++) {
for (int i = 1; i + k <= bel[n]; i++) {
const int j = i + k;
F[i][j] = F[i+1][j] + F[i][j-1] - F[i+1][j-1] + f[j][R[i]] - f[j][L[i]-1];
}
}
}
/////////////////////
inline void solve(int l, int r) {
int bL = bel[l], bR = bel[r];
if (bL == bR) {
la = lb = 0;
for (int i = L[bL]; i <= R[bL]; i++) {
if (id[y[i]] >= l && id[y[i]] <= r)
b[++lb] = y[i];
else if (id[y[i]] < l)
a[++la] = y[i];
}
ans = pre[r] - (l == L[bL] ? 0 : pre[l-1]) - merge(a, b, la, lb);
}
else {
ans = F[bL+1][bR-1] + pre[r] + suf[l];
for (int i = bL + 1; i <= bR - 1; i++) {
ans += f[i][R[bL]] - f[i][l-1] + f[i][r] - f[i][L[bR]-1];
}
la = lb = 0;
for (int i = L[bL]; i <= R[bL]; i++) {
if (id[y[i]] >= l)
a[++la] = y[i];
}
for (int i = L[bR]; i <= R[bR]; i++) {
if (id[y[i]] <= r)
b[++lb] = y[i];
}
ans += merge(a, b, la, lb);
}
print(ans);
putc('\n');
}
int main() {
gi(n);
gi(m);
for (int i = 1; i <= n; i++) {
gi(y[i]);
x[i] = y[i];
id[x[i]] = i;
}
init();
for (int i = 1; i <= m; i++) {
ll l, r;
ll in1, in2;
gi(in1); gi(in2);
l = in1 ^ ans;
r = in2 ^ ans;
solve(l, r);
}
return 0;
}